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Abstract

Modeling spatial or temporal long-range dependency
plays a key role in deep neural networks. Conventional
dominant solutions include recurrent operations on sequen-
tial data or deeply stacking convolutional layers with small
kernel size. Recently, a number of non-local operators
(such as self-attention based [57]) have been devised.
They are typically generic and can be plugged into many
existing network pipelines for globally computing among
any two neurons in a feature map. This work proposes a
novel non-local operator. It is inspired by the attention
mechanism of human visual system, which can quickly
attend to important local parts in sight and suppress other
less-relevant information. The core of our method is
learnable and data-adaptive bilinear attentional transform
(BA-Transform), whose merits are three-folds: first, BA-
Transform is versatile to model a wide spectrum of local or
global attentional operations, such as emphasizing specific
local regions. Each BA-Transform is learned in a data-
adaptive way; Secondly, to address the discrepancy among
features, we further design grouped BA-Transforms, which
essentially apply different attentional operations to different
groups of feature channels; Thirdly, many existing non-
local operators are computation-intensive. The proposed
BA-Transform is implemented by simple matrix multiplica-
tion and admits better efficacy. For empirical evaluation,
we perform comprehensive experiments on two large-scale
benchmarks, ImageNet and Kinetics, for image / video clas-
sification respectively. The achieved accuracies and various
ablation experiments consistently demonstrate significant
improvement by large margins.

1. Introduction

This era has witnessed the vigorous development of deep
neural networks, with significant empirical success in a
plethora of important real-life vision tasks [28, 36, 45, 56].
The neural architectures of convolutional networks are still
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Figure 1: (a) Typical architecture of neural networks with non-
local operators, where non-local neural blocks (highlighted in
blue) are sparsely added into original network pipeline to instan-
taneously achieve large receptive fields. (b) Illustration of our
proposed bilinear attentional transform (BA-Transform). With
properly-learned matrices P(X),Q(X) in the transformation for-
mula Y = P(X)XQ(X), BA-Transform can conduct a variety of
operations (selective zooming and dispersing to distant positions
as shown in this sub-figure) on attended features. The super-scripts
in P,Q emphasize their dependence on X.

undergoing rapid evolution. Much of recent endeavor has
been devoted to designing deeper [48, 17] or wider [61,
14] network architectures, or more effective atomic con-
volutional operators [6, 20]. The main interest of this
work is modeling long-range spatial [57] or temporal [56]
dependencies in deep convolutional networks. To this
end, classic neural networks, such as VGG-Net [48] or
ResNet [17], mostly adopt a scheme of deeply stacking
many convolutional layers with small receptive fields (e.g.,
3× 3 kernels in ResNet [17] and 3× 3× 3 spatio-temporal
kernels in C3D [52]).

One of current research fronts regarding effectively en-
larging neural receptive fields is to sparsely insert non-local
operators into an existing network pipeline. An illustration
of such a architecture is shown in Figure 1(a). The main
challenge for sparse insertion of non-local operators is their



high time complexity. For example, in [57], Wang et al.
proposed a seminal non-local neural operator based on self-
attention, which requires O(N2) (N counts all locations
in the feature map) vector multiplication. Arguably, the
scheme in Figure 1(a) can strike a good tradeoff between
complexity and performance.

Our method is inspired by human visual perception.
For the optical signal received at the retina, human eyes
are believed to conduct both a bottom-up procedure for
obtaining low-level abstraction, and top-down attentional
operations that quickly locate most interesting parts from
the entire field of visual scene. The eyes will focus on
the attended regions for further inspection. Such attention
mechanism is clearly more effective for visual understand-
ing in comparison with blind processing. This has inspired
substantial efforts on devising various powerful attentional
neural networks [41, 16, 25] used for visual analysis and
generation. Figure 1(b) illustrates our proposed bilinear
attentional transform (BA-Transform). It processes an
input feature map X to obtain a new Y via the formula
Y ← P(X)XQ(X), where all variables are matrices and
their sizes can be inferred from context. Motivating our
advocate of the BA-Transform we consider two desiderata:

Firstly, human are remarkably capable of capturing com-
plex attention patterns, which can be accomplished even at
a single glimpse. The attended parts in visual field can be
spatially or temporally disjoint (e.g., in a video of boxing
action, two boxers shall both be paid attention to, even if
they might be distant to one another), or highly complex. It
is thus crucial to enforce that neural attentional units have
sufficiently powerful modeling capability. Our proposed
BA-Transform supports a large variety of operations on the
attended image or video parts albeit its simplicity, including
numerous affine transformation (selective scaling, shift,
rotation, cropping etc.), suppressing / strengthening local
structure or even global reasoning, as partially illustrated in
Figure 1(b).

Secondly, bilinear matrix multiplication is amenable
to efficient differential calculation. In practice, we can
add neural blocks that implement BA-Transform into an
existing network, and jointly train all neural layers in an
end-to-end fashion. Top-down supervision can be gradually
back-propagated to shallow layers and enforce the consis-
tency between learned attentions and top-down supervision.
When plugged in neural architecture with skip connections,
BA-Transforms tend to learn complementary attentions at
different insertion, corroborated by empirical studies in our
experimental section.

The proposed BA-Transform naturally inherits almost
all advantages of its precedent works [57, 24]: capturing
long-range interactions via directly connecting all locations,
seamlessly combined with many existing neural networks,
and elevating performance even being inserted only very

few times. In addition to all above, we also propose
a channel-grouping scheme. This enforces that a same
attention pattern is shared within a group. This explicitly
enables that multiple heterogeneous attention patterns can
be simultaneously learned for the same feature map in the
neural networks.

The rest of this paper is organized as following: We first
review related work in Section 2 and detail the proposed
block design in Sections 3 and 4. Section 5 showcases
the effectiveness of this global operator by conducting
experiments in two tasks, including image recognition and
video classification.

2. Related Work
Neural Attention. Human visual system is known to

have high resolution at the fovea and low resolution in the
periphery [46]. Attention mechanism bridges this gap, and
inspires much of recent development in the computer vision
domain. Successful applications of attention in vision tasks
include image classification [55, 59], image generation [16],
segmentation [4, 12], action recognition [57, 37] etc. In
neural networks, attention of each pixel can be softly
estimated (i.e., soft attention) and hardly classified into 0 or
1 (i.e., hard attention). A popular treatment to obtain hard
attention is learning to crop image regions using pre-trained
detector [58, 34] or policies trained via reinforcement
learning [41]. Our proposed method falls into the category
of soft attention [25, 13, 54, 57, 9], where the attention
units are typically differentiable and trained by gradient
back-propagation. Some classic methods treat attention
as bottom-up saliency [55, 9]. Recent advances have
increasingly emphasized the drive of top-down supervision.
Another taxonomy is based on whether attention is learned
locally or globally. Deformable convolution [10, 64] seeks
for local interesting pixels. self-attention based attention
methods [57, 24] globally connect all locations. Among
globally-learned attention models, some accomplishes in
one shot (e.g., STN [25] and our proposed method), and
others recurrently reinforce the model [41, 16, 27].

Network Architecture. Recent years have observed
a blossom of novel neural networks. Classic networks
(e.g., VGG [48]) favor convolutions with small kernels.
The global interaction among all locations are obtained
by deeply stacking many convolutional layers and utilizing
skip connections (e.g., ResNet [17] and DenseNet [23]).
More complex kernels and networks can be automatically
found via neural architecture search (NAS) [1, 35, 5]. It has
also been intensively explored to use mixed or large recep-
tive fields. For instance, Inception [50, 51] and SKNet [31]
use an ensemble of differently-sized kernels. Most relevant
works to ours are non-local neural networks [57, 7, 24]
and GloRe unit [8], which can globally disperse any local
message. In our proposed BA-Transform, group-wise
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Figure 2: Design of our proposed BAT-Block. The left panel draws the computational pipeline of our proposed BAT-Block. The right
panel shows more details, particularly the transformation predictor. To save space, batch normalization, ReLU and our proposed row /
column normalization are not shown here. More explanation is found in Section 3.2.

attention is adopted, similar to group or depth convolutions
used in MobileNet [19, 47, 18], ShuffleNet [63, 39] and
IGCNet [49].

Image / Video Classification. A majority of neu-
ral networks [17, 55, 23, 10, 64, 6] are developed for
tackling image recognition. Early development of deep
network based video classification directly borrows pre-
trained image models. Features are first extracted from
frame-based video snippets, and fused either by recurrent
aggregation [60] or naive pooling [56]. Karpathy et al.
in [26] first introduced 3D convolutional operation to this
task. The follow-up work of I3D [2] proposed a better net-
work initialization by inflating pre-trained 2D filters to 3D.
To expedite computing spatio-temporal convolutions, some
recent methods decoupled 3D convolution and sequentially
execute along the spatial and temporal dimensions [43, 53,
62]. TSM [32] presented an efficient method to model
temporal information by shifting in timescale.

3. The Proposed Approach
We first introduce a general definition of bilinear at-

tentional transform (BA-Transform) in Section 3.1. In
practice, BA-Transform is wrapped into a neural block
which can be dropped into any arbitrary CNN architectures.
The details, including various engineering considerations,
can be found in Section 3.2.

3.1. Formulation

Let X ∈ RH×W×C be a feature map with C channel.
H,W denote the sizes along two spatial dimensions respec-
tively. Our goal is to design an operator which transforms
an input X into a same-sized output Y ∈ RH×W×C . Crit-
ically, each element of Y is expected to relate to multiple

features in X (i.e., the non-local property of capturing long-
range dependence), and contain all key information of X
(i.e., Y learns the attention of X). Different from existing
self-attention [54] based non-local operators [57] and its
approximate accelerated variants [7, 24], we here utilize
bilinear matrix product as below,

Yc = P(X) ·Xc ·Q(X), (1)

where the sub-script c denote an H ×W slice of X or Y
along the c-th channel. P(X) and Q(X) are transformation
matrices to be learned, with the size of H × H and W ×
W respectively. Their super-scripts imply that both are
dependent on the input data X, thus data-adaptive. For
brevity, hereafter the super-scripts will be omitted.

Let us give some intuitive explanation for Eqn. (1). Once
properly learned, according to the theory of elementary
matrix [40], the left-multiplier P can be represented as
the product of three kinds of elementary matrices that
interchanging rows, multiplying row by a scalar, or adding
a multiple of row to another row, respectively. Likewise,
the learned right-multiplier Q defines a series of elementary
column operations to X. The joint function of P,Q enables
a large spectrum of transformation of X, including selective
zooming, suppressing / enhancing specific sub-matrices of
X etc. Two special cases are found in Figure 1(b).

The previous work STN [25] aims to learn invariance
to translation, scale, rotation and more generic warping by
affine transformation. Our work differently pay varying
attention weights on the feature map. STN is also limited
by the number of spatial transformers, while ours can
capsule several attentional operations in a pair of P,Q.
Additionally, our proposed BA-Transform does not suffer
from the black border problem [25]. When compared with



self-attention based operators [57], our method tends to ex-
hibit superior performance, supposedly owing to effectively
modeling complex attentional patterns.

3.2. Basic 2D BAT-Block for Image Tasks

We term a neural block that wraps and implements an
instance of BA-Transform as BAT-Block. The architecture
of BAT-Block is shown in Figure 2. Following by the
common practice of residual block [17, 55], we add two 1×
1 convolutions into the BAT-Block. Any input feature maps
will first go through channel reduction at the beginning
and channel promotion at exit. Residual connection is
also adopted. There are two key procedures in the BAT-
Block, namely transformation predictor and BA-Transform
respectively. The former reads X ∈ RH×W×C (the output
of the first 1 × 1 convolution) and predicts two parametric
matrices P ∈ RH×H and Q ∈ RW×W conditioned on X.
The latter is previously described in Eqn. 1.

Empirically, it is observed that the matrix norms of
P,Q tend to explode after a few epoches of gradient back-
propagation. For the consideration of numerical stability,
we enforce all elements in P,Q are non-negative and nor-
malize them in an L1 sense by rows or columns respectively,
as below:

Pi,j ←
Pi,j∑H
k=1 Pi,k

, Qi,j ←
Qi,j∑W

k=1 Qk,j

, (2)

where i, j, k collaboratively compose valid indices for ac-
cessing an individual element in P and Q.

Now we elaborate on two core operations in transforma-
tion predictor:

1. Feature compression via channel reduction and
row / column pooling. The reduced feature map X (from
some D channels to C) is often sill too large for computing
over the global receptive field. To further reduce the time
complexity, we further reduce the number of channels in
X via a 1 × 1 convolutional layer, followed by a batch
normalization layer and ReLU. The obtained representation
is denoted as F ∈ RH×W×C′

, where C ′ � C.
We expect that each individual element in P,Q is

estimated globally conditioned on F. To this end, it is
necessary to extract some global, compact representation
from F, particularly when F still has high spatial resolution.

Inspired by the recently proposed corner pooling [29], a
seemingly effective solution is to squeeze F in either row-
wise or column-wise manner. To be specific, we devise
row / column pooling on F. Let Frp ∈ RH×1×C′

,Fcp ∈
R1×W×C′

be the output of row pooling or column pool-
ing, respectively. These operations are defined as below
(channel-wise index is omitted for brevity):

Frp
i = max {Fi,j | 1 6 j 6 W} , (3)

Fcp
j = max {Fi,j | 1 6 i 6 H} . (4)

x 2

Matrix
resizinga b

c d

a 0
0 a

b 0
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c 0
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d 0
0 d

Figure 3: Illustration of matrix resizing. In this example H/sh =
W/sw = 2.

The procedure is intuitively illustrated in the right panel
of Figure 2.

2. Estimate P,Q with full convolution. The next
step estimates P and Q from the compact pooled features
Frp,Fcp, respectively. To this end, we simply adopt
learnable convolutional kernels. Importantly, to ensure
global information is utilized in learning P,Q, kernels with
global receptive fields that access all pooled features are
used. For example, H×1 kernels for obtaining P and 1×W
kernels for Q. Different from Squeeze-and-Excitation (SE)
operation in [22], our method can largely preserve spatial
information which is crucial for predicting P or Q. SE does
not take spatiality into account.

3.3. Improving 2D BAT-Block

Our practical investigation also reveals the particular
effectiveness of two techniques, in the sense of either
acceleration or accuracy elevation.

Block based matrix estimation. Predicting full resolu-
tion of P,Q from the pooled features still imply tremen-
dous parameters. As shown later in our experiments,
over-parameterized BA-Transform can adversely affects the
generalization performance. Inspired by the super-pixel
idea widely used in image analysis, we implement a variant
of BA-Transform that harnesses a block-based matrix form.
Specifically, the feature map F is uniformly divided into
sh × sw blocks along its two spatial dimensions, where
sh, sw are some integers (e.g., 7) typically divisible by
H,W , respectively. Row or column pooling is conducted
by the following updated formula:

Frp
i = max{Fk,j |i 6 k < i× H

sh
, 1 6 j 6 W}, (5)

Fcp
j = max{Fi,k|j 6 k < j × W

sw
, 1 6 i 6 H}. (6)

This leads to much smaller pooled features Fcp ∈
Rsh×1×C′

and Frp ∈ R1×sw×C′
. Correspondingly, the

sizes of P,Q are shrunk to sh×sh or sw×sw, respectively.
This requires significantly fewer parameters. A normal
routine as described in Section 3.2 is called to learn the
BA-Transform. Afterwards, we adopt a simple strategy to
restore the full-resolution of P,Q. As depicted in Figure 3,



when the element-block correspondence is determined be-
tween two matrices, each element in the low-resolution
matrix is coped to the respective diagonal locations in the
high-resolution matrix. Other cases that H/sh = W/sw 6=
2 can be likewise derived.

Channel-grouping multi-head attentions. Follow-
ing [54], we adopt the implementation of multi-head atten-
tion. Specifically, X is uniformly split into k > 1 groups
along the channel dimension. The idea is illustrated in
Figure 2. For each group, a unique pair of (P,Q) will be
learned and utilized in Eqn. (1), k pairs of (P,Q) in total.
This arguably enhances the ability of tackling complex
attention patterns. Our experiments demonstrate this simple
idea of channel grouping.

3.4. Spatio-Temporal 3D Block for Video Tasks

BAT-Block can be trivially extended to high dimensions.
In video tasks, a popular treatment is to stack features from
consecutive frames. The input variables are thus 4D tensors,
e.g., X ∈ RT×H×W×C with T being the number of stacked
frames. Let X<t,∗,∗,∗> ∈ R1×H×W×C be a time-indexed
slice of X. To extend the 2D BAT-Block, we first separately
process each time slice X<t,∗,∗,∗> using the learned P,Q
according to Eqn. 1, obtaining the corresponding output
Y<t,∗,∗,∗>.

Next, information from different time slices are fused
along the time dimension. Let T ∈ RT×T be the learnable
transform matrix in the time scale, and Z ∈ RT×H×W×C

be the final result. 3D BAT-Block has the following extra
computation:

Zc ← T ⊗ [Y<1,∗,∗,c>,Y<2,∗,∗,c>, . . . ,Y<T,∗,∗,c>] ,
(7)

where Y<t,∗,∗,c> ∈ R1×H×W×1 is a slice indexed by
time and feature channel. ⊗ denotes ordinal convolution.
Zc ∈ RT×H×W×1 is c-th channel of Z. Essentially, T
defines a 1 × 1 timescale convolution that operates on the
concatenated T slices from Y.

In practice, T can be simultaneously learned with P
and Q in transformation predictor. Similar to row or
column pooling, we design an average pooling along time,
which is also adopted for frame feature representation in
most video understanding tasks [33, 3]. To better capture
temporal dynamics, we also implement multi-head attention
at temporal dimension.

3.5. Complexity Analysis

Table 1 compares the number of parameters and FLOPs
between the standard NL block [57] and our proposed BAT-
block. Here we only take 2D block as an example and 3D
block should reach the same conclusion. Since C ′ � C,
sh � H and sw � W , the complexity of terms with
these symbols is negligible. It can be found that BAT-Block

NL block [57] BAT-Block

#Params 2C2 5
4
C2 + 1

2
CC′ + 2C′ks3

FLOPs 2C2HW + CH2W 2

5
4
C2HW

+ 1
2
CHW (H + W )

+ 1
2
CC′HW + 2C′ks3

Table 1: Complexity analysis. For brevity, here we set sh =
sw = s and C = D/2 for BAT-Block, which is also consistent
with experiments in Section 4.

is more light-weight than NL block and the advantage of
computation cost is much more obvious especially when the
input resolution increase.

4. Experiments
To validate the effectiveness and efficiency of the pro-

posed block, we conduct comprehensive experiments on
two standard tasks: image classification and video classi-
fication, where the large-scale ImageNet [28] and Kinet-
ics [2] benchmark datasets are used respectively. Besides
the percentage accuracy, we also report GFLOPs and the
amount of parameters (Params#M) for each network vari-
ant. Unless explicitly stated, 5 BAT-Blocks are evenly
inserted to a specific model on Res3 and Res4 with C =
D/2, C ′ = k = 4, and sh = sw = 7. We adopt 3D
BAT-Blocks for video classification where the block-based
matrix trick is not used along time dimension since the
number of input frames is not that large.

4.1. Experimental Setups

Image Classification. All network variants are trained
on 4 GPUs for 90 epochs with the same strategy using Py-
Torch [42]. The learning rate starts from 0.1 and decreases
by a factor of 0.1 after 30, 60 and 80 epochs. The batch size
is set to 256. We adopt the Stochastic Gradient Descent
(SGD) optimizer during training. The validation accuracy
are obtained in the same way as [17, 22, 61] based on
224× 224 single center crop.

Video Classification. We conduct experiments on
Kinetics-400 [2] for human action recognition. Kinetics
is a large-scale trimmed video dataset that contains more
than 300K video clips in total. To conduct ablation studies,
following [62] we create a smaller dataset named as
Mini-Kinetics-200, which contains 200 categories. For
each category, we randomly sample 400 examples for the
training set and 25 examples for the validation set.

We choose ResNet-50 C2D and ResNet-50 I3D [57] as
our backbone. The models are initialized from the pre-
trained weights on ImageNet and finetuned on 4 GPUs with
a mini-batch of 64 clips. The standard cross-entropy loss
is used to guild video classification. All the models use
8-frame input clips with a stride of 8 frames (so covering
64 frames in the raw view). The spatial size of input is



Method GFLOPs #Params Top-1

baseline 4.14 25.56 76.3
full resolution 5.50 31.86 77.6
downsampling 5.22 30.23 78.1

block-based 5.44 30.23 78.3

Table 2: Ablation studies of block-based matrix.

fixed as 224 × 224. For Kinetics-400, all the models are
trained for 100 epochs with a learning rate starting from
0.01 and decreasing by a factor of 10 after 40 and 80
epochs. For Mini-Kinetics-200, the total epochs are 50 and
a linear warm-up strategy [15] is used in the first 2 epochs.
In addition, a cosine schedule [38] is adopted to perform
learning rate decay. To reduce over-fitting, we also utilize
dropout with a ratio of 0.5 after the global average pooling
layer. Meanwhile, the weight decay is set to 0.0001.

We adopt the same data augmentation as [56], i.e.,
random horizontal flipping, random cropping and scale
jittering. We report the clip Top-1 accuracy by selecting the
center clip with center crop, and the video Top-1 accuracy
by using 10-clip in time dimension, 3-crop spatially fully-
convolutional inference [57, 11, 32]. More details can be
found in Supplementary Materials.

4.2. Results on ImageNet

We conduct ablation studies on ImageNet using the
standard ResNet-50 [17] by default.

Ablation Study of block-based matrix. In order to
reduce the computation cost and the amount of parameters
especially for the input of high resolution, we introduce the
block-based matrix in Section 3.3. Here we also explore
an alternative method termed as downsampling in Table 2.
Instead of resizing the predicted matrix P / Q to the full res-
olution, this method downsamples the input feature map X
to Xds ∈ Rsh×sw×C firstly and then operate BA-Transform
on Xds to get Yds with the spatial size sh × sw. At
last, we upsample Y ds to the full resolution Y by bilinear
interpolation. We also conduct experiments that predict P
/ Q with full resolution directly. As shown in Table 2,
both the downsampling and block-based method can reduce
GFLOPs and the number of parameters compared with
full resolution while the block-based one obtains a higher
performance. We analyse that more details are kept in our
block, which are probably crucial for classification. Results
on ResNet-50 show that the block-based method could also
reduce over-fitting.

Different numbers and stages. Table 3 explores differ-
ent numbers of BAT-Blocks inserted to different locations
of a model. We find that even one BAT-Block inserted
at Res3 or Res4 can bring a significant improvement, and
the improvement of a BAT-Block on Res5 is minor, which
may be caused by the small spatial size (7 × 7) that can

Res3 Res4 Res5 Top-1 Top-5

76.3 92.9

+1 77.1 93.5
+1 77.2 93.7

+1 76.7 93.0

+1 +1 77.7 93.9
+2 +3 78.3 94.0

Table 3: Performance gain by varying the inserting positions
and counts of BAT-Blocks.

k GFLOPs #Params Top-1

baseline 4.14 25.56 76.3
0 5.43 30.17 76.5

1 5.44 30.18 77.9
2 5.44 30.19 78.0
4 5.44 30.23 78.3

16 5.45 31.09 78.4

Table 4: Ablation studies of multi-head attention. k represents
the number of attention groups. k = 0 means that the P / Q is
fixed as identity matrix.

Backbone Method GFLOPs(∆) #Params(∆) Top-1

ResNet-18
baseline - - 70.2

+NL 0.23 0.17 70.9
+BAT 0.03 0.13 71.3

ResNet-50
baseline - - 76.3

+NL 3.55 7.36 77.5
+BAT 1.30 4.67 78.3

Table 5: Comparisons with NL block on ImageNet.

not provide precise spatial information. More BAT-Blocks
continue to improve the performance.

Multi-head attention. We explore the effectiveness
brought by multi-head attention with different k in Table 4.
In order to confirm whether the improvement mainly bene-
fits from the extra parameters, we design a new baseline by
setting P / Q to an identity matrix and not conditioned on
the input, noted as k = 0 in Table 4. As can be seen, there is
tiny improvement by simply introducing extra parameters.
Even one group of attention could bring a noticeable im-
provement (+1.4%) with negligible parameters introduced
compared with the new baseline. This phenomenon shows
that the transformer predictor is the key to improve per-
formance and it’s very light-weight. And more groups of
attention can further improve the performance, but the gain
diminishes quickly.

Comparisons with NL block. NL block [57] has
been proved to significantly improve performance in several
tasks by modeling long range dependencies [57, 7, 24]. We



Method GFLOPs #Params Top-1

SE-ResNet-50 [22] 4.2 28.1 76.9
GE-ResNet-50 [21] - 31.1 76.8

SRM-ResNet-50 [30] - 25.6 77.1
A2-Net [7] - - 77.0

DenseNet-201 [23] 4.4 20.0 77.4
ResNeXt-50 (32× 4d) [61] 4.3 25.0 77.8
Res2Net-50 (14w×8s) [14] 4.2 - 78.1

Oct-ResNet-50 [6] 2.4 25.6 77.3

ResNet-101 [17] 7.9 44.6 77.4
ResNet-152 [17] 11.6 60.2 78.3

SE-ResNet-152 [22] 11.7 67.2 78.4
ResNeXt-101 (32× 4d) [61] 16.5 88.8 78.8

AttentionNeXt-56 [55] 6.3 31.9 78.8

ResNet-50 + BAT 5.4 30.2 78.3
SE-ResNet-50 + BAT 5.5 33.1 78.4

ResNext-50 (32×4d) + BAT 5.6 29.7 78.6

ResNet-101 + BAT 9.2 49.2 79.1
ResNet-152 + BAT 12.9 64.9 79.4

Table 6: Comparisons with state-of-the-art on ImageNet.

compare these two blocks to show the superiority of ours.
We insert NL blocks at the same locations as those of BAT-
Block and the results are shown in Table 5. Obviously,
our proposed method is more light-weighted and effective
compared with NL block, with only 13% ∼ 31% GFLOPs
and fewer parameters to achieve higher accuracy.

Comparisons with state-of-the-art. In order to verify
the generality of BAT-Blocks, we also conduct experiments
on some other popular networks and go deeper with BAT-
Blocks. As shown in Table 6, consistent performance
gain could be obtained by inserting BAT-Blocks even for
a very deep model, ResNet-152. Additionally, adding BAT
blocks to shallower models can outperform several deeper
neural networks. For example, ResNet-50 with BAT blocks
achieves the same accuracy as the original ResNet-152
while using only half GFLOPs and parameters around.

4.3. Results on Kinetics

Comparisons with NL block. Table 7 shows the
results of video classification on Mini-Kinetics-200. We
found that it was easy to overfit in video classification for
models adding BAT-Blocks, and initializing BAT-Blocks
with parameters pre-trained on ImageNet could alleviate
this problem in large measure. For a fair comparison, we
also conduct the experiment with pre-trained NL blocks.
We can find that BAT blocks with only spatial attention
could achieve a better accuracy than NL blocks with less
computation cost and fewer parameters whether NL net-
work is pre-trained on ImageNet or not.

Attention on temporal dimension. We also examine
if the temporal attention works well for video classification

Method Pre-trained GFLOPs #Params Val Train

baseline - 19.55 23.92 66.4 71.6

NL No 30.69 31.28 67.7 72.6
NL Yes 30.69 31.28 68.8 74.6

BAT (4, 0) Yes 24.76 28.60 69.5 76.0
BAT (4, 1) Yes 24.77 28.60 70.3 77.1
BAT (4, 2) Yes 24.77 28.60 70.5 77.6
BAT (4, 4) Yes 24.77 28.60 70.6 77.5

Table 7: Results on Mini-Kinetics-200. Pre-trained means
whether the newly added blocks are pre-trained on ImageNet. BAT
(ks, kt) represents BAT block with ks groups of spatial attention
and kt groups of temporal attention. All models adopt ResNet-50
C2D as backbone. Clip Top-1 accuracy is reported here.

Method 3D-Conv GFLOPs #Params Top-1

A2-Net [7] Yes 40.8 - 74.6
Oct-I3D [6] Yes 25.6 - 74.6
TSM [32] No 32.8 24.3 74.1
GloRe [8] Yes 28.9 - 75.1

C2D No 19.6 24.3 72.0
I3D Yes 28.4 28.4 72.7

C2D + NL No 30.7 31.7 73.8
I3D + NL Yes 39.5 35.4 73.5

C2D + BAT No 24.8 29.2 74.6
I3D + BAT Yes 33.6 32.9 75.1

C2D + 3D-BAT No 24.8 29.2 75.5
C2D + 3D-BAT† No 24.8 29.2 75.8

Table 8: Results on Kinetics-400. The first set is recent state-
of-the-art, the second set is our re-implemented models, and the
last set is our methods. The group number of spatial attention is
8 and that of the temporal attention is set to 4. All the models
use ResNet-50 as backbone and 8 frames as input. “†” represents
finetuning with TSN framework [56].

and the results are reported in Table 7. The improvement is
significant (+0.8%) by adding a even single group of spatial
attention with negligible extra parameters. More groups of
temporal attention could further improve the performance.

Results on Kinetics-400. Here we compare our methods
with state-of-the-art on the full dataset to demonstrate the
effectiveness and efficiency of our BAT-Block. It has been
widely proven that the performance of video classification
is closely related with the number of input frames and
backbone architectures [57, 11, 44], and as a result, for
fair comparisons, we only focus on comparing with models
using 8-frame clips as input and ResNet-50 as backbone.

Firstly, we re-implemented the C2D, I3D baselines and
NL networks under the same settings as ours. All the results
can be found in Table 8, which indicate that the proposed
2D BAT-Block consistently improves the performance over
both C2D and I3D baselines, and the benefit of temporal at-



Figure 4: Examples of attention weight. To investigate where BAT-blocks focus for each group of attention, we visualize the attention
weights of the last BAT block with 8 attention groups as the last block is most related to the final classification. These samples are taken
from the validation set of ImageNet randomly. From left to right, each group contains an RGB image and its corresponding eight attention
maps. For clear clarification, we note the attention weight images of each group as a-d (the top 4 images, from left to right) and e-h (the
bottom 4 images, from left to right). We find that, for all examples, e pays more attention to the bottom of images while f focuses on
the top regions, and these two attention collaborate with each other to classify an image by splitting the full image into two sub-regions.
Additionally, g tends to observe the background, and h prefers to focus on the regions nearby the foreground. Therefore, they may help
the network model rich context information. It can be found that all a-d focus on the foreground, but there are still some differences each
corresponding various discriminative details. More examples can be found in supplementary materials.

Backbone 8-frame 16-frame 64-frame

ResNet-50 75.5 76.9 77.7
ResNet-101 76.2 77.4 -

Table 9: Results on Kinetics-400 with different length of
sequences or backbones. All the models adopt C2D + 3D-BAT.
For models with sequences longer than 8 frames, the block-based
matrix trick is adopted along time dimension to reduce parameters,
and the number of blocks are set to 8× 8.

tention is noticeable. Additionally, our method outperforms
NL networks by a large margin. Introducing 3D convolution
improves C2D + BAT by 0.5% while temporal attention
improves 0.9% with almost zero growth of both GFLOPs
and parameter numbers, which shows the powerful ability
of BAT-blocks to model 3D information.

Comparing with other state-of-the-art, we can see that
simply adding 2D BAT-blocks on a basic network can
achieve a comparable results with other recent methods, and
models with 3D BAT-block outperform most competitive
models. Specifically, to our best knowledge, after finetun-
ing with TSN framework [56], we can achieve a new state-
of-the-art among models under the similar complexity.

Longer sequences and deeper networks. Finally, we
investigate the generality of our methods on longer input
videos or deeper networks. And the results can be found
in Table 9. For comparison, based on ResNet-101 and 128-
frame clips, the accuracy of C2D baseline is 75.3% and I3D
+ NL is 77.7% [57], which shows that our methods work
well on longer sequences or deeper networks.

4.4. Visualization

The above experiments have shown the effectiveness of
BAT-Block on both 2D and 3D tasks, here we visualize
several attention weight maps to investigate how BAT-Block
works. In order to visualize where a block pays attention
over input images, we adopt the following formula to re-
project the attention weights to the input feature maps:

W = PᵀAQᵀ, (8)

where A ∈ RH×W is an all-ones matrix. W is the re-
projected attention weight with shape H ×W . The results
are normalized between 0 and 255 for visualization. Some
examples are depicted and analyzed in Figure 4.

5. Conclusion
We propose BA-Transform, a novel method which can

model various attentional operations by matrix multiplica-
tion. The core operation is to learn data-adaptive grouped
bilinear attentional transforms. We wrap this operation to a
BAT-Block and carefully design transformation predictor.
It can be dropped into most existing networks and opti-
mized easily. Extensive experiments on image classification
and video action recognition verify the superiority of our
method both in accuracy and efficiency. Acknowledgement:
This work is partially supported by Beijing Natural Science Foun-
dation (Z190001), Beijing Municipal Commission of Science and
Technology (Z181100008918005) and National Natural Science
Foundation of China (61772037).
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