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Abstract

Video visual relation detection (VidVRD) aims to de-
scribe all interacting objects in a video. Different from
relationships in static images, videos contain an addition
temporal channel. A majority of existing works divide a
video into short segments, predict relationships in each
segment, and merge them. Such methods cannot capture
relations involving long motions. Predicting the same
relationship across neighboring video segments is also
inefficient. To address these issues, this work proposes
a novel sliding-window scheme to simultaneously predict
short-term and long-term relationships. We run windows
with different kernel sizes on object tracklets to generate
sub-tracklet proposals with different duration, while the
computational load is similar to that in segment-based
methods. To fully utilize spatial and temporal information
in videos, we construct one spatial and one temporal graph
and employ Graph Convloutional Network to generate
contextual embedding for tracklet proposal compatibility
evaluation. We only predict relationships on highly-
compatible proposal pairs. Our method achieves state-of-
the-art performance on both ImageNet-VidVRD and VidOR
dataset across multiple tasks. Especially for ImageNet-
VidVRD, we obtain an average of 3% (R@50 from 8.07%
to 11.21%) improvement under all evaluation metrics.

1. Introduction
Booted by the impressive development of deep learning,

we have made unprecedented progress towards machine
comprehension on visual information. A lot of research
efforts have been made on low-level vision tasks such as
object classification/detection [29, 6, 28, 14] and semantic
segmentation [53, 23]. However, understanding visual
contents at a higher semantic level still remains challenging.
To bridge the gap between low-level vision-only tasks and
high-level vision-language ones, visual relation detection
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Figure 1. Typical pipeline of existing segment-based video visual
relation detection methods. Relationships are separately detected
in each short segment and merged afterwards. In particular, for the
greedy relation association stage, black, red, and blue bars corre-
spond to directly detected, detected after merging, and missing
relationships (mainly owing to long duration), respectively.

(VRD) serves as a promising intermediate task.
Visual relations between entities, denoted by the

〈subject, predicate, object〉 triplet, offers a comprehensive
visual content understanding beyond objects. In order to
localize objects in one scene and recognize their interac-
tions, visual relation detection requires the model to fully
capture fine-grained visual cues, while the dependency on
language priors to output visual relations is relatively minor.
This is a steady first step towards connecting computer
vision and natural language. Early works in visual relation
detection mostly focused on static images (ImgVRD) [21,
20, 8, 58, 47, 44] and achieved exciting results. Recently,
a new task is proposed by [34] as video visual relation
detection (VidVRD). It involves detecting and tracking
pairs of objects in a video, as well as recognizing the
dynamic interaction between them. Effectively capturing
spatial and action relations between objects in a video
is especially useful, improving the results in captioning
[43, 45], video retrieval [2, 13], visual question answer
[1, 39], and many other visual-language tasks.

A direct way to tackle VidVRD problem would be to
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Figure 2. Mean duration of relations in VidOR. The x, y axis are relationship category and mean duration (seconds) respectively.

extend ImgVRD solutions to video case, but it can easily
fail due to the ignorance of video-visual-relation-specific
characteristics. First, some dynamic interactions between
objects, such as 〈airplane, move past, watercraft〉 , can only
be observed in videos. Videos are also capable of resolving
ambiguities in motions. Second, interactions between two
specific objects in a video can change or disappear over
time. Therefore, simply applying ImgVRD methods to each
video frame would mean omitting the additional relation
information provided in videos.

Currently, some methods [34, 36, 27] are designed to
capture such dynamic and time-varying relations between
entities in videos. As shown in Figure 1, these methods
first decompose the target video into several one-second
segments, then detect initial relations fully from local
segment information. The dominating way for get final
video-level relations are greedy local association as in
[34], which greedily merges two adjacent segments if
they contain the same relation. In the relation proposal
refinement step, the most recent [36] linked all segments as
a Markov Random Fields (MRF), which leads to an illusion
of a global method. However, the pairwise cliques in MRF
mainly enhance smoothness between adjacent segments.
The last step of [36] still used greedy local association for
obtaining video-level results, therefore it is arguably still
local (e.g., unable to recognize the long-duration “dog-run
away-person” that crosses 3 segments). Similar argument
holds for GCN-based method in [27]. On the other hand,
these methods bring computation redundancy by predicting
relations for each segment. In Figure 2, we summarized
the mean duration of all relations in the VidVOR dataset
[34]. Almost all of the relations last more than one second,
crossing multiple video segments. Separately predicting
relationships in each segment and merging them together
contains redundant computation on the same relation under
similar appearance.

In this paper, we decompose our method into three
independent stages. The first stage generates object track-
let proposals; The second stage refines proposal features

and find related subject-object proposals; The third stage
focuses on predicting the relationships. To solve the two
problems mentioned above, we propose a novel sliding-
window strategy in tracklet proposal generation to substi-
tute the common video segmentation approach. We run
windows with multi-scale kernels on tracklet frames to
get tracklet proposals with varying length. All tracklets
in each unique window, indicating they are in the same
temporal interval, are passed to stage two for compatibility
evaluation. This sliding-window approach ensures the
observation of relations on varying temporal scales, and
increases efficiency in detecting the same relationship in
continuous frames.

Stage two takes in tracklet proposal features and con-
structs one spatial and one temporal graph to refine these
features. Graph Convolutional Network [19] is utilized
to embed contextual information into proposal features.
Two groups of features incorporated with spatial and
temporal knowledge respectively are then fused together.
The resulted features pass through one pair correlation
embedding module to get the final contextual embedding.
Compatibility is evaluated between tracklet embeddings to
determine related proposal pairs. In stage three, detection
features, I3D features and relative motion features are
extracted from pair proposals and combined together to
predict the relationship distribution.

Our model is evaluated on two video relation bench-
marks: ImageNet VidVRD dataset [34] and VidOR dataset
[34]. Utilizing the sliding-window approach for tracklets
generation and spatial and temporal graphs for proposal
compatibility evaluation, our method achieved state-of-the-
art performance on two tasks: video relation detection and
video relation tagging. We also conducted comprehensive
ablation study and observed intermediate outputs to prove
the effectiveness of our pipeline.

2. Related Work

Video Object Detection Recent deep learning-based meth-
ods [15, 29, 38] have achieved mature performance on



object detection in static images. For object detection in
videos, an additional temporal channel is added, so the
goal is to localize objects with bounding box trajectories.
Temporal continuity in videos provides useful information
for object detection, but the existence of blur, occlusion
and camera motion would hamper accurate localization. It
is also necessary to improve the speed upon still image
detectors for video object detection. Most methods focusing
on improving per-frame detection results with temporal
information can be classified into two steams: box-level
based and feature-level based. Box-level methods [18, 11,
49] combine image object detection and tracking. Bounding
boxes are first detected in individual frames, then they are
associated across frames by employing external tracking
modules. Feature-level methods [55, 56, 57] utilizes
temporal information via flow-guided feature propagation
from previous frames. This early integration of temporal
cues with features directly improves detection accuracy in
each frame.
Visual Relation Detection Several methods have been
proposed for visual relation detection in static images
(ImgVRD). In [24], the task of visual relation detection is
defined as both predicting the 〈subject, predicate, object〉
triplet and localizing object and subject by bounding box.
The most common approach to detect visual relations is to
first find all objects in the image and predict relationship
between each pair of them, as in [24, 46, 48, 51, 9].
[46] facilitates interaction between local object features and
global predicate features by introducing two new pooling
modules.Instead of detecting all objects in the first step, [52]
proposes a Relation Proposal Network to evaluate the com-
patibility between class-agnostic proposals. Their pipeline
only predicts relation and object and subject category for
related proposals.

Recently, the first dataset on video visual relation
detection (VidVRD) is introduced by [34]. [33] also
proposed a baseline for VidVRD task, decomposing one
video into segments and merging relationship predictions
in neighbouring segments through a greedy association
algorithm. A fully-connected spatial-temporal graph is
constructed for each video in [27], and feature interaction
is formulated via Graph Convolutional Network. [36]
constructs a similar graph as above, but utilizes Conditional
Random Field to exploit the statistical dependency between
objects. Our work introduces a sliding-window approach to
observe relations with different length, without the need to
merge the same relations in different segments.
Graph Neural Networks Graph Neural Networks (GNNs)
[12, 32] is widely applied to process graph data, propagating
neighboring information among elements in the graph.
Encouraged by the success of convolutional neural network
in computer vision applications, a lot of research efforts
have been made to re-define convolution of graph data.

All methods fall into two categories, spectral-based [5, 17,
10] and spatial-based [25, 3, 26] graph convolution[42].
Graph Convolutional Network (GCN) [19] successfully
bridged the gap between these two approaches, generalizing
the operation of convolution from non-structural data to
graph-structured data. GCN stacks multiple graph con-
vloutional layers to extract high-level representation for
nodes. [27] abstracts videos into fully-connected spatial-
temporal graphs and conducted reasoning in these 3D
graphs. In our work, we build two graphs to separately
formulate spatial and temporal information interactions
between tracklet proposal features.

3. The Proposed Approach
As shown in Figure 3, we can naturally decompose video

relation detection into three sub-tasks: Object Tracklets
Proposal, Relationship Pair Proposal and Relationship Clas-
sification. Stage one generates object tracklet proposals
with varying length using the sliding-window approach. For
each unique window, all tracklet proposals in this temporal
interval will be the input to stage two. Stage two assembles
compatible subject-object pairs by congregating spatial and
temporal information into proposal features. Stage three
then predicts relationship for each pair with the detected
visual features, I3D features, and position-related relative
motion features. As irrelevant pairs are filtered out in stage
two, all calculations in stage three would result in valid
relationships. Therefore, our pipeline is highly efficient.

3.1. Object Tracklet Proposal

Video Object Detection Following [34], we first employ
an object detector in video frames, then track frame-level
detection results across the whole video. For image object
detection, we use a Faster-RCNN [29] with ResNet101
[16] backbone as our detector. The detector is trained on
images from MS-COCO [22] and ILSVRC2016-DET [30]
datasets, with 35 categories in total. In order to reduce
the overlapping area between bounding boxes, we perform
non-maximum suppression (NMS) with Intersection Over
Union (IoU) > 0.5 on image object detection results.
For object tracking, we run a Multiple Object Tracking
(MOT) algorithm on the entire video to connect the same
object between neighbouring frames. Performing MOT
on the entire video is more difficult than on segments,
as in [34], for a complete video can possibly contain
occlusions and illumination variations. We choose deep
sort [41] as our tracker which can integrate visual features
as matching descriptors to improve tracking performance.
Object detection features obtained from RoI Pooling [29] is
used as visual features in deep sort. Different from [34], we
perform NMS in the detection part instead of the tracking
part. The reason is that NMS in tracking is category-
agnostic, so overlapping trajectories from different classes
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Figure 3. Illustration of our proposed method for video visual relation detection. Our model contains three stages: Object Tracklets
Proposal, Relationship Pair Proposal and Relationship Classfication. See the main text for more explanation. Better viewing in color mode.

might be wrongly removed. NMS in detection is aware
of object categories, avoiding such a problem, making our
approach more effective than [34].
Proposal Generation from Sliding Windows We adopt
a sliding-window approach to generate object tracklet
proposals, as shown in Figure 3. Considering that true
relation instances often exhibit large variance in their
duration, we run the sliding window routine with multiple
kernel size. Given one window unique on the temporal
scale, all tracklets in this window are passed into stage
two. Windows are enumerated according to the temporal
position of tracklets, and the sliding window length value
set depends on the length of each tracklet. To be more
specific, suppose the tracklet frame length is L, we set the
smallest window size to 30 frames and the largest to L. We
would sample all multiples of the smallest window size that
is smaller than L and also L as the length of sliding window.
The stride of sliding windows sampling is empirically set to
be half of window size without much fine-tuning.

Predicting relation on video parts with varying temporal
scales has two advantages. The first is that only our pipeline
can observe certain relationships that only exist in long
video clips. For example, it is hard to distinguish between
a person playing the piano and a person sitting in front of
the piano from an one-second video clip, therefore previous
works [34, 27, 36] observing only on short video segments
can fail such cases. But as our method predicts relationship
from tracklets with various length, we are able to figure out
the correct motion by looking at a longer clip. The second is
that our method does not require merging same relationship
in neighboring segments, meaning that we can avoid both

the cost of merging and that of redundant prediction on the
same relation under similar scenes.

3.2. Relationship Pair Proposal

Stage two aims at filtering out incompatible proposal
pairs, feeding only related pairs into the next stage for
relationship classification. We construct one spatial graph
and one temporal graph for information aggregation. Each
node in the graph represents an object tracklet proposal,
while tracklet proposal features from stage one is the initial
value for each node. The edge between each two nodes
is calculated as spatial IoU and temporal IoU respectively
in two graphs. We use Graph Convolutional Networks
to embed spatial and temporal contextual information in-
dividually into tracklet features based on the above two
graphs. The two resulted feature vectors are concatenated
to form the final feature for each node, congregating both
spatial and temporal information in one representation.
The embedding for all nodes are then fed into one pair
correlation embedding module, generating compatibility-
augmented representations for each tracklet. This module
ensures compatible tracklets admit high cosine similarity
between feature vectors. Two tracklet proposals bearing
high similarity between feature are judged as related pro-
posal pairs and sent to stage three.

We represent the tracklet proposals obtained from stage
one as {P1, P2, ..., PN}, where N is the number of object
tracklet proposals.
Spatial Graph To encode spatial contextual information
into tracklet features, we build a spatial graph using the
spatial IoU (sIoU) between every two object tracklets.



Suppose the object in tracklet proposal Pi is detected in M
frames. We average over all object bounding boxes in these
M frames and denote the mean bounding box area as p̄i.
sIoU between object tracklet proposal Pi and Pj is defined
the Intersection Over Union between p̄i and p̄j .

We perform normalization on each row of the graph
matrix so that the weight of all edges connecting to one
tracklet proposal Pi sum up to be 1. Motivated by the
recent works [37, 40], we adopt the softmax function for
normalization to obtain the value of edges in spatial graph
Gspa:

Gspa
ij = exp(sIoU(Pi, Pj))/

N−1∑
j=0

(exp(sIoU(Pi, Pj))). (1)

Temporal Graph To encode temporal contextual infor-
mation into tracklet features, we build a temporal graph
using the temporal IoU (tIoU) between every two object
tracklets. tIoU between object tracklet proposal Pi and
Pj is defined as the Intersection Over Union between their
temporal interval.

Similar to spatial Graph, we use the softmax function for
normalization to obtain the edge weights in temporal graph
Gtem:

Gtem
ij = exp(tIoU(Pi, Pj))/

N−1∑
j=0

(exp(tIoU(Pi, Pj))). (2)

Convolutions on Graph To embed spatial and temporal
contextual information, we apply Graph Convolutional
Network (GCN) proposed in [19]. Different from standard
convolutions which operates on a local regular grid, graph
convolution allows us to operate on graph data. Graph con-
volution is computed through gathering the response from
each node’s neighbours, and multiple graph convolutional
layers are stacked to extract high-level representation for
nodes. Therefore, graph convolution is suitable for formu-
lating information exchange between nodes. The outputs of
GCN are updated features for each node. The computation
in one graph convolutional layer can be represented as:

Z = GXW, (3)

where G represents the weights from one of our N × N
adjacency graph (Gspa, Gtem); X is the input to this layer
with dimension N × d, containing features of each graph
node; W is the trainable weight matrix of this layer with
dimension d × d. Therefore, the dimension of output Z
is still N × d, the same as input. The graph convolution
operation can be stacked into multiple layers. After each
layer of graph convolutions, we apply two non-linear
functions including Layer Normalization [4] and ReLU
activation before feature Z is forwarded to the next layer:
Z = norm(σ(GXW)).
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Figure 4. Illustration of our relationship classification module.

Pair Proposal After combining spatial and temporal con-
textual information with tracklet features in two graphs
via GCN, we concatenate the resulted features, creating
a comprehensive representation for each tracklet. To
get relationship pair proposals, we send these features
to another pair correlation embedding module for object
compatibility evaluation. This module is implemented by
two fully connect layers with ReLU. We then calculate
cosine similarity on the output node features and select
proposal pairs with high feature similarity. These pairs
are considered to be related and sent to stage three for
relationship classification.

3.3. Relationship Classification

We use 〈Ps, Po〉 to represent a tracklet pair pro-
posed by stage two, where Ps, Po are both a sequence
of bounding boxes. To predict the relation triplet
〈subject, predicate, object〉 involves the recognition of
both object, subject categories, and the interactions between
them. Given C object classes and R relationships, the total
number of possible relationships will beO(C2R). Learning
an unbiased model on so many relationships with limited
labeling data is a challenging task. One common solution
to this problem is to learn separate models for object and
relationship detection, reducing the complexity of training
detectors toO(C +R). Our method following this solution
to predict object and relation category separately.

For object classification, assuming that tracklet proposal
Pi has M objects. The category of each object is detected
in stage one. We find the mode of the M object categories
Ci in stage three, and use Ci as the final category of the
tracklet proposal.

For relationship classification, we first extract a relation
feature vector for each pair proposal. As shown in Figure 4,
the relationship classification module contains two different
types of feature extractor: subject/object feature extractor
and relative motion extractor. In subject/object feature



extractor, two backbones are responsible for extracting
detection feature and I3D feature [7], and each is followed
by an RoI pooling layer to get features with fixed dimension
2048 and 832. For relative motion feature extractor, we
follow [34] to calculate ∆C, ∆S and ∆M between subject
Ps and object Po. The notations ∆C, ∆S, ∆M represent
relative position, relative size and relative motion between
subject and object tracklet proposals, respectively. These
three vectors are concatenated into an 118-dimensional
relative motion feature. The overall relation feature vector
for relationship prediction between tracklet proposal pairs
is the concatenation of Ps and Po object features and the
relative motion feature.

In training, we sample certain tracklet proposal pairs
from stage two for relationship prediction. Only pairs
overlapping with the ground truth by more than 0.5 in vIoU
(volume IoU) are selected. we use multilabel classification
and binary cross entropy loss function to calculate the loss
between prediction and ground truth. In testing, we are
consistent with [34], keeping top 20 prediction results for
each pair proposal.

4. Experiments
To validate the effectiveness of our proposed method,

we perform comprehensive experiments and compare the
results with state-of-the-art VidVRD methods. In addition,
we conducted a number of ablation studies to show the
benefit of our modules.

4.1. Dataset Description

We adopt two video relation benchmarks in our exper-
iments: ImageNet-VidVRD [34] and VidOR [33] dataset.
ImageNet-VidVRD contains 1,000 videos (800 for training
and rest 200 for evaluation) selected from ILVSRC2016-
VID dataset [30]. Videos are chosen based on whether they
contain clear visual relations. This dataset is well-labeled
with object categories and corresponding trajectories. It
covers 35 common subject/object categories and 132 re-
lationships. All relations can be divided into three types:
relative spatial positions, actions and actions adjectives.
VidOR (Video Object Relation) is a large scale user-
generated video dataset from social media. It has the same
annotation format as ImageNet-VidVRD and is ten times
larger, containing 10,000 videos selected from YFCC100M
collection. VidOR contains 80 object categories and 50
predicate categories. It is split into 7,000 videos for training,
835 videos for validation, and 2,165 videos for testing. Due
to its large size, VidOR brings great challenge to relation
detection and tagging.

4.2. Evaluation Protocol

Following the setting in [34], we evaluate our method on
two standard tasks: relation detection and relation tagging.

For relation detection task, we aim to generate a set of
〈subject, predicate, object〉 relation triplets with tracklet
proposals from a given video. The prediction is considered
to be correct if there is a same relation triplet tagged
in ground truth and both subject and object trajectories
have sufficient vIoU (volume IoU). We set the overlapping
threshold of vIoU to 0.5, the same as [34]. We adopt mean
Average Precision (mAP) and Recall@K to evaluate the
detection performance. Recall@K measures the fraction
of the positive detection in the top K results, and K is set
to 50 and 100. We use the mAP metric to evaluate the
overall precision performance at different Recall values.
For relation tagging task, we only consider the accuracy
of predicted video relation triplets and ignore the object
localization result. We aligned ourselves with [34] to use
Precision@1, Precision@5 and Precision@10 to measure
the accuracy of the tagging results.

4.3. Ablation Studies

To prove the effectiveness of stage two and three in our
architecture, we design several ablation studies. For the
Relationship Pair Proposal module, we explore how the
number of spatial/temporal GCN layers can influence the
performance of our method. The potency of our spatial and
temporal graph is also investigated. For the Relationship
Classification module, we show the effect of different
feature combinations on both the task of relation detection
and tagging.
Spatial and Temporal GCN In the Pair Proposal module
(PPN), we build spatial and temporal graph on tracklet
proposals. Two Graph Convolutional Networks are used
to individually embed the spatial and temporal contextual
information of each object tracklet proposal. In this part,
we only evaluate on the output of stage two, judging on
the accuracy of related pairs. We analyze the influence
of GCN layer number on experimental performance. The
results are shown in Table. 1 and Table. 2. For spatial
GCN, our architecture achieves the best results at 3 layers.
For temporal GCN, the best layer number is 2. GCN with
more layers is prone to overfitting, resulting in a decline in
performance. We use the best result for spatial and temporal
GCN here in other experiments.

layer number
relation pair proposal

R@50 R@100 R@200
0 16.08 17.77 18.29
1 16.64 19.68 21.70
2 16.70 19.72 21.65
3 16.94 19.88 21.84
4 16.63 19.55 21.41

Table 1. Evaluation of our method with different numbers of
spatial GCN layers on ImageNet-VidVRD dataset. Temporal GCN
is removed in all the above experiments.

In addition, we investigate how these two GCN networks



layer number
relation pair proposal

R@50 R@100 R@200
0 16.08 17.77 18.29
1 16.54 19.54 21.51
2 16.91 19.70 21.77
3 16.64 19.54 21.60
4 16.40 19.40 21.83

Table 2. Evaluation of our method with different numbers of
temporal GCN layers on ImageNet-VidVRD dataset. Spatial GCN
is removed in all the above experiments.

cooperated with each other on improving the relation
detection results. The results are shown in Table. 3. We
can observe that both spatial GCN and temporal GCN lead
to a significant increase in Recall@K. But the performance
gain boosted by spatial GCN is greater than temporal GCN
since the ImageNet-VidVRD dataset contains more relative
spatial position relations. Literally, spatial relationships
such as ”walk left” and ”stand front” are not sensitive to
changes in time. Compared to spatial graph, temporal
one does not provide much information in detecting such
relationships. Nevertheless, the model shows the best
results when spatial and temporal GCN are combined,
which boosted a 3.8% improvement than only using spatial
GCN in Recall@50.

graph type relation pair proposal
spatial temporal R@50 R@100 R@200

16.08 17.77 18.29
X 16.94 19.88 21.84

X 16.91 19.70 21.77
X X 17.58 20.46 22.23

Table 3. Evaluation for the combination of spatial and temporal
GCN used for Pair Proposal module on ImageNet-VidVRD
dataset.

Relationship Classification module Our relationship clas-
sification module combines detected visual features, I3D
features, and position-related relative motion features for
relation prediction. Here, I3D features reflect action in-
formation in videos, while motion features indicate relative
position information between subject and object. Detected
visual features contain category information of object track-
let, which is the most crucial one for predicting relationship
in the triplet. Therefore, we keep detected visual features
in all cases in ablation study. Our ablation study compares
between three situations: only detected features, detected
features and I3D features and all three features.

Table. 4 displays the performance of these three models.
We can observe that both I3D features and motion features
can boost the performance of our network. It’s worth noting
that motion features improves the performance to a greater
extent than I3D features in both relation tasks. The reason
is the same as that in the previous spatio-temporal GCN
ablation study: the ImageNet-VidVRD dataset has more
relative spatial position relations than action ones; Motion

features contains the relative position, size and velocity
information between two object trajectories, which are all
crucial for spatial relation.

Our method obtains the best performance when fusing
detected visual features, I3D features and motion features
together. This demonstrates that all three features are
effective in relation detection and tagging.

feature type relation detection relation tagging
detection I3D motion R@50 R@100 mAP P@1 P@5 P@10

X 8.47 11.00 14.01 56.50 36.70 26.60
X X 9.14 11.39 14.81 55.50 38.90 28.90
X X X 11.21 13.69 18.38 60.00 43.10 32.24

Table 4. Evaluation for different kinds of features used in relation
classification stage on ImageNet-VidVRD dataset.

4.4. Results Analysis

In this part, we compare our proposed method with some
state-of-the-art methods on the above two datasets.
Methods to Compare For ImageNet-VidVRD benchmark,
we consider to compare with the following methods: VP
[31], Lu’s-V [24], Lu’s [24], VTransE [50], VidVRD
[34], GSTEG [36] and VRD-GCN [27]. The first four
methods focus on feature extraction from static images
but ignore dynamic features in videos. VidVRD detects
visual relations in videos through object tracklet genera-
tion, relation prediction and greedy relational association.
GSTEG constructs a Conditional Random Field on a fully-
connected spatio-temporal graph and designs a novel gated
energy function. VRD-GCN extracts video features from
a similar spatial-temporal graph convolutional network and
proposes an association algorithm using vIoU similarity
confidence scores.

For VidOR benchmark, we compare our method with
the top 2 competitors in ACM Multimedia 2019 Grand
Challenge. We use their team names to represent their
methods, which are MAGUS.Gamma [35] (the first place)
and RELAbuilder [54] (the second place).
Quantitative Analysis To evaluate the performance of the
PPN module, we compare our results with VidVRD [34]
baseline. Here we use the same metrics as those in ablation
studies. The results are shown in Table. 5. We can observe
that Recall@K (K equals 50, 100 and 200) of our method
are much better than those in VidVRD baseline. This is
because Pair Proposal module filters out most incompatible
proposal pairs, reducing computational waste in stage three
and making it easier to train the classification network. By
adding PPN module, we can select better proposal pairs and
get a higher Recall.

We show our overall performance and comparisons re-
sults to the baselines in Table. 6 (ImageNet-VidVRD bench-
mark) and Table. 7 (VidOR benchmark). On ImageNet-
VidVRD benchmark, our proposed method outperforms
all the comparison methods by a large margin on all
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Figure 5. Visualization of video relation detection and relation tagging results using VidVRD baseline and our model. Better viewing if
enlarging the images.

Method
relation detection

R@50 R@100 R@200
VidVRD[34] 10.87 12.18 14.51
PPN(Ours) 16.08 17.77 18.29

PPN-STGCN(Ours) 17.58 20.46 22.23
Table 5. Experimental results of relation pair proposal stage. See
the main text for more explanation.

Method
relation detection relation tagging

R@50 R@100 mAP P@1 P@5 P@10
VP [31] 0.89 1.41 1.01 36.50 25.55 19.20

Lu’s-V [24] 0.99 1.80 2.37 20.00 12.60 9.55
Lu’s [24] 1.10 2.23 2.40 20.50 16.30 14.05

VTransE [50] 0.72 1.45 1.23 15.00 10.00 7.65
VidVRD [34] 5.54 6.37 8.58 43.00 28.90 20.80
GSTEG [36] 7.05 8.67 9.52 51.50 39.50 28.23

VRD-GCN [27] 8.07 9.33 16.26 57.50 41.00 28.50
Ours 11.21 13.69 18.38 60.00 43.10 32.24

Table 6. Experimental results of different methods for standard
video relation detection and video relation tagging on ImageNet-
VidVRD benchmark.

metrics. On VidOR benchmark, our method achieved great
improvement in relation detection task and also comparable
results in relation tagging task. [35] gained better results in
relation tagging because they utilized optical flow models
to gain superior results in video object detection. This is
especially effective for VidOR dataset because it contains
lots of motion relations. However, optical flow requires
huge amounts of computation, and thus their pipeline are
far less efficient than ours. We use the same video object
detector with [54], and achieved better results.

Method
relation detection relation tagging

R@50 R@100 mAP P@1 P@5
RELAbuilder [54] 1.58 1.85 1.47 33.05 35.27

OTD+CAI [35] 6.19 8.16 5.65 48.31 38.49
OTD+GSTEG [35] 6.40 8.43 5.58 51.20 37.26

MAGUS.Gamma [35] 6.89 8.83 6.56 51.20 40.73
Ours 8.21 9.90 6.85 48.92 36.78

Table 7. Experimental results for standard video relation detection
and video relation tagging on VidOR benchmark. [35] achieved
better results in relation tagging, but it requires huge amounts of
computation. See the main text for more explanation.

Carefully observing the results in Table. 6 and Table. 7,
we find that among all the evaluation metrics, Recall@K
(K equals 50 and 100) have the largest increase compared

to other methods. There exist two main reasons. The
first is that our proposed method utilizes a sliding-window
approach with multi-scale kernels to generate object tracklet
proposals, so that we can detect relationships with varying
duration and predict temporal boundary more accurately.
The second is that our PPN module filters out many inaccu-
rate proposal pairs. Therefore, our method outperforms all
the baselines on Recall@K (K equals 50 and 100) metric.
Qualitative Analysis We illustrate our qualitative results in
Figure 5. As shown in this figure, VidVRD baseline detects
few relationships and fails to classify relations like ”walk”
and ”stand”, especially when the object moves very slow.
This is because the whole scene changes little in short video
segments, making it difficult to distinguish between stand
or walk. Benefited from generating tracklet proposals in
a varying duration, our method can detect both long-term
and short-term relationships. This enables us to achieved
better performance than methods relying only on short
video segments.

5. Conclusions
In this paper, we propose a three stage method for both

the task of video visual relation detection and tagging. The
first stage generates object tracklet proposals; The second
stage refines proposal features and find related subject-
object proposals; The third stage focuses on predicting the
relationships between related pairs. Our pipeline is superior
in that we can observe relationships with varying length
efficiently using sliding window, while other works can only
see relations in short video segments. We also utilized
GCN in stage two to construct a contextual embedding
incorporating spatial and temporal information for proposal
compatibility evaluation. The experimental results on two
datasets ImageNet-ViVRD and VidOR demonstrate that our
method outperforms the state-of-the-art baselines on both
video relation detection and relation tagging tasks.
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